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Abstract

Asymptotic approximations are developed for zeros of the solutions Gi(z) and Hi(z) of the
inhomogeneous Airy differential equation w” — zw = +1. The solutions are also called Scorer

functions. Tables are given with numerical values of the zeros.
© 2002 Published by Elsevier Science (USA).

1. Introduction

Scorer functions are particular solutions of the non-homogeneous Airy differential
equation. Detailed information on these functions can be found in [1] and in
references given in [2]. We summarize the properties that are needed in this paper.

We have for zeR

w' —zw= —1/n with solution
Gi(z) ! /oo sin{ zt + ! £ ) dt ()
_7Z 0 3 ’
and for zeC
" . . . 1 o a-dp
w' —zw=1/n with solution Hi(z) = - / e"73 dt. 2)
0
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The solutions of the homogeneous Airy equation w” — zw = 0 are denoted by Ai(z)
and Bi(z). They have the integral representations

. 1 ®© 1 3
A1(z)=—7;/0 cos zt+§t dt,

. 1 ® . 1 3 l «© zt—ltJ
B1(z)=; A sin{ zt + 3¢ dt+; A e 73 dr, (3)

where we assume that z is real.
Initial values are

Gl(O)——Hl(O) L pi L ai '

3 V3 37/61’(%)
Gi'(0) = %Hi’(o) - % Bi'(0) = -% A¥(0) = 3—5731@ (4)
From (1)—(3) it follows that

Gi(z) + Hi(z) = Bi(z). (5)
Other relations that we need are (see [2,3])

Hi(z) = et/ Hi(ze /%) 4 2T/ Aj(zeF27/3), (6)
and

Gi(z) = —e*>™/3Hi(zeT /%) +iAi(z). (7

Proofs follow easily by verifying that the right-hand sides satisfy the differential
equations, and from the initial values.
We use the asymptotic expansions

(3s 4+ 2)! 1
z)~— <zm -4,
Gi(z) m[ 5 Z TG [phz[<37 -8 (8)
Bs+2)!
HI(Z)N -———[ ’_3 Z 5l 323 Z— s
2
lph(~z)|<3m—94, 9)

0 being an arbitrary positive constant. These expansions follow from (1) and (2) and
by using standard methods from asymptotics (Watson’s lemma; see [4, page 112,
431)).

2. Qualitative properties of the real zeros of Gi(z) and Gi'(z)

From (2) we see that Hi(z) >0 and Hi'(z) >0 for real finite z. However, Gi(z) and
Gi'(z) have real zeros. First we show that Gi(z) does not have positive zeros. Later,
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we study properties of the negative real zeros and we discuss the properties of the
zeros of the derivative.
For studying qualitative properties of the zeros, relation 10.4.51 in [1].

WIGi, Bi|(x) = Gi(z)Bi'(z) — Gi'(z)Bi(z) = % / " Bi(r) de (10)
0

will be useful, together with well-known properties on the interlacing of zeros of
functions:

Lemma 1. Let f(x) and g(x) be two continuously differentiable functions in an interval
I. Let WIf,gl(x) =f(x)g'(x) — f(x)g(x) be such that W|f,g](x)#0Vxel.

Then, the zeros of f(x) and g(x) in I are simple. Furthermore, between two
consecutive zeros of f(x) there is exactly one zero of g(x) (and vice versa).

As a consequence, if g(x) has no zeros in I then f(x) has at most one (simple) zero in
I (and vice versa).

From Lemma 1 we can check that
Lemma 2. Gi(x) is positive for x=0.
Proof. Bi(x)>0 for x>0 (see [1], for example the series expansion in 10.4.3) and
then (Eq. (10)) W[Gi, BiJ(x)>0 for x>0. From Lemma 1, Gi(x) can have at most
one (simple) positive real zero, but Gi(0)>0 and Gi(x)>0 for large positive x

(Eq. (9)); therefore Gi(x)>0 for x=0. O

To consider negative values of z, we first remark that Bi(z) has an infinite number
of negative zeros which we denote by {b,}.

Lemma 3. Gi(b,) <0 Vn.

Proof. From (5), and the fact that Hi(x) >0 we have Bi(x) > Gi(x) for all real x. O
Lemma 4. Gi(x) has exactly one simple zero in (b;,0).

Proof. Gi(b;)<0 whereas Gi(0)>0 (see (4)); then Gi(x) has at least one zero in
(61,0). Furthermore, Bi(x)>0 and then W/[Gi, Bi](x) <0 in (b;,0). Then, Lemma 1

implies that there is only one zero in this interval and that it is simple. O

Between by = —1.17371 and b, = —3.27109, the function Bi(x) is negative, and so
Gi(x) is negative in that interval (Bi(x)>Gi(x)). More generally, we have that:

Lemma 5. Gi(x) has no zeros in the intervals [bai2,ba41], n=0,1, ... .

We are only left with the possibility of having zeros in intervals (byy+1,b2), n=
1,2, ..., where Bi(x)>0. Numerical experiments show that these zeros are simple.
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The proof that all real or complex zeros of Gi(z) and Hi(z) are simple does not
follow from the inhomogeneous differential equations (1) and (2). Recall that for
functions defined by homogeneous linear differential equations of second order, as
the Airy functions, such a proof is trivial. The essential difference between these two
cases is that the existence and uniqueness theorem for solutions of a linear second
order homogeneous ODE guarantees that the only solution having a double zero at a
point x = xq is the trivial solution; contrary, for (1) and (2), there is always one
solution with a double zero at x = xy and it is not a trivial solution.

We can see this explicitly:

Lemma 6. The function
¥(z) = a(20)Ai(z) + B(20)Bi(z) + Gi(2),

with a(zo0) = — [5° Bi(?)dt, and B(z0) = [;° Ai(t)dt — 1 is the solution of o — zew =
—1/7 with a double zero at z.

Proof. Solve the system y(zo) =0, y'(z0) =0 for « and f and use the Wronskian
relations 10.4.10, 10.4.47 and 10.4.51 of [1]. O

In fact, fg Ai(t) dr is numerically seen to be negative for negative x, which
indicates that the negative real zeros of Gi(x) are simple because f(zq) <0 Vzo <0.

If there were any real double zero (which is not the case), it necessarily would be
an extremum:

Lemma 7. The double real zeros of a real solution of 0" — zw = +1/7n are necessarily
local extrema of the function.

Proof. Let xo be a (double) zero of a solution w(x). Then, using the differential
equation, ®”(xo) = +1/n. O

Lemma 8. The number of simple zeros of Gi(x) in each interval (bypi1,ban), n=
1,2, ..., is, at most, two.

Proof. Given that Gi(x) is negative at the zeros of Bi(x) and that the double zeros, if
any, are extrema of the function, we see that the number of simple zeros (if any) must
be even. Let us show there can be no more than two simple zeros.

The fact that Bi(x)>0 in (byn42,b1) implies that £W[Gi, Bij(x) >0, which
means that W[Gi, Bi](x) has at most one zero in (ba,+2, b2n+1). Then, if Gi(x) had 2n
zeros, n>1, at least two of these zeros would lie in an interval where W[Gi, Bi(x)
does not change sign; this would imply (Lemma 1) that there would be a zero of
Bi(x) between these two zeros of Gi(x), but Bi(x)>0 in (ban42,b2n+1). O

In fact, numerical calculations show that in the intervals (ba,41,b62:), n=1,2, ...,
exactly two zeros of Gi(x) occur, which means that there are no double zeros of
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Gi(x) and that W[Gi,Bi](x) = [; Bi(f)dr has exactly one zero in the intervals
(ban+1, b2n)- This, together with the monotony of f(f Bi(7) dt in the intervals (b1, bn),
indicates that:

Conjecture 1. The real zeros of Bi(x) and [; Bi(z) dt are interlaced.
We also propose that:

Conjecture 2. There are exactly two zeros of Gi(x) in the intervals (bpiy,ban)-
We can prove that this holds for large negative zeros:

Lemma 9. For large n each interval (ban+1, ban) has two zeros of Gi(x).

Proof. This follows from known asymptotic estimates. Bi'(x) has negative zeros,
denoted by 4. Then (see [1, p. 450]),

Bi(b,) = (=1)"0(n™"/%), n— oo, (11)

From (9) we see that Hi(d),) = O(1/b,) as n— co. Hence, Gi(d},) = Bi(d),) —
Hi(b5,) is positive for large values of n, and Gi(x) has at least two zeros in the
interval (byyy1,b2,). O

The fact that the real zeros of Gi(x) are simple is also supported by the fact that
the zeros of Gi(x) and Gi’ seem to be interlaced, which can be easily proved for large
x using the forthcoming asymptotic expansions.

Conjecture 3. The negative zeros of Gi(x) and Gi'(x) are interlaced.

Assuming this conjecture to be true, together with the fact that, numerically, we
observe that g, > g/ where g, and g are, respectively, the first negative zeros of Gi(x)
and Gi'(x), we see that:

Lemma 10. The negative zeros of Gi'(x) are simple.

Proof. Differentiating the differential equation it is easy to see that the double zeros
of Gi'(x) cannot be extrema of Gi(x): if x¢ is such that Gi'(xg) = Gi"(xp) = 0 then
Gi"(x9) = x0Gi'(x0) + Gi(xp) = Gi(x0) #0 (because we assume that the zeros of
Gi(x) and Gi'(x) are interlaced). However, by this same assumption, between two
zeros of Gi(x) there must be only one zero of Gi'(x) which, clearly, must be a local
extrema and therefore cannot be a double zero of Gi'(x). O

We use an additional numerical fact to prove Lemma 12; also, the following result
is used:
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Lemma 11. W[Hi', Gi'|(x) has, at most, one positive real zero.
Proof. We use the differential equations and (5); with this:

W(x) = WHI,Gi](x) = %Bi’(x) —2 /0 " Bi(r) d.

Then, given that W(0)>0 and W'(x) = — [ Bi(¢) dt<0 for x>0, W (x) has at most
one positive zero. [

Indeed, we observe that such zero exists xo~1.0653592469.
Lemma 12. Gi'(x) has exactly one positive real zero.

Proof. Indeed, Gi'(0)>0 (4) while (9) shows that Gi'(x)<0 for large positive x,
which implies that there must be at least one positive zero of Gi'(x). This, together
with the fact that the double zeros of Gi' are not extrema, implies that there must be
an odd number of positive zeros. Let us assume for the moment that all the positive
zeros of Gi'(x) are simple; in this case, we show that there is only one positive zero.

Gi’(x) cannot have three or more simple positive zeros because, W[Hi', Gi'] has at
most one positive zero (Lemma 11) and Hi'(x)>0. The possible zero of
W Hi', Gi')(x) cannot coincide with any zero of Gi'(x), because we are assuming
by now that the zeros of Gi’(x) are simple; thus, if Gi’(x) had at least three zeros, at
least two of them would lie in an interval where W[Hi', Gi'](x) does not change sign.
This is in contradiction with the fact that Hi'(x)>0 (see Lemma 1).

On the other hand, the only possible double zero of Gi'(x) should coincide with
the positive zero of W[Hi', Gi'](x). However, it is numerically observed that

Gi'(xy) <0 being x the positive zero of W[Hi',Gi'|(x). O

The numerical value of this isolated zero of Gi'(x), is g’ = 0.60907541707... .

3. Asymptotics of the negative zeros of Gi(z)

We write Gi(—z) = Bi(—z) — Hi(—z), and use the asymptotic expansion of Bi(—z)
as given in [1, p. 449] and of Hi(—z) that follows from (9). We write

. 1 3 hs
Hl('—z) — EHQ(Z), Ha(z)~] - ; Z3(s+1)?
354+ 2)!
hs = (=1’ (—;37)‘ "

Bi(—z) = 7512174-[@5 (g + %n) P() + —lc—sin (c + %n) Q(C)], (13)
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= (=1)° 2 1)

PO~ Y TS g3 El (14)
s=0 C s=0 C

23 I3+

(=37 a=l e Te+] (15)

We explain the method by taking Ha({) = P({) = 1 and Q({) = 0. This gives for the
equation Gi(—z) = Bi(—z) — Hi(—z) = 0 a first equation

1 1
cos((+zn> =\/—_nzm' (16)
Using z3/* = ,/3(/2, we obtain
1 2
cos(C+Zn) =\/3 (17)
For large { solutions occur when the cosine function is small. We put
3
{=Cn+e, C,,=(n—z)n, n=12,3,.... (18)

The equation for ¢ reads

) c ct
Sms_\/C,,+s_\/l+st2' =1/\/C, ¢ 2/(3m). (19)

For small values of ¢ this equation can be solved by substituting a power series ¢ =
g1t + &t + ---, and the coefficients can be obtained by standard methods. For
example, &; = c¢. By using the asymptotic expansions for Ha(z), P({) and Q({) a few
extra technicalities are introduced. With the help of a computer algebra package the
general coefficients ¢, are easy to calculate. Finally, we find for z = (3¢/2)**, and for
gn, the zeros of Gi(z), the expansion

2
3
T GC) [H+ar +erf+ 7 n=123 . (20)
or
2
gn~ = [(3n(d4n = 3)/8P[1 + 38 + 4t + -],
- (21)
(n—-3/4)r
where
x5 2 _ 4
BEZ VT ST YT oo
_¢(81¢* — 1060) 189¢* + 20
T 0620 0 BT T e (22)

The expansion in (21) reduces to the expansion of the zeros b, of Bi(z) if we take ¢ = 0.
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3.1. The real zeros of Gi'(z)

For the real zeros of Gi'(z) we can use the same procedure. For this case we need

o 1 —~ 5 = };s >
HI(-0) = ), Ha)~1-) g o= Govdh (D)
zl/4 1 1 1
Bi'(-z) =ﬁ[sm(c +Zn)R(C) —ZCOS(C+ZTE> S(C)]’ (24)
x 1’d e d 6. 1
RO~ - C) = ~ Z L, o= _624: 7 (29)
5=0 =0

where { and ¢, are defined in (15). Using Gi'(—z) = Bi’(—z) — Hi'(~z) we obtain the
equation for determining the zeros:

(o 1\ 1S ! | _Ha()
n(e+3) ~trie () <R o

Using z%4 = (3(/2)*/?, we see that the main part of this equation is obtained by

neglecting the term with the function Ha(z), but we can proceed in the same manner
as before.
We put

€=C;+8la C:|= <n—%)ny n=172737"' ) (27)

and we can obtain for ¢ an expansion. Finally, we obtain for g, the zeros of Gi'(z),
the expansion

2
G~ — (%62)3[1 ver’ +ert+ P n=1,2,3, . (28)
or
gy~ — [(3m(dn — 1)/8[1 94t + 9565 + ],
= (n~——1 oL )
where

7 2c
= To =3 Ye=0=0,

35 719¢ 10c2
=T =T -

This expansion reduces to that of b, the zeros of Bi'(z) if we take ¢ = 0.
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4. The complex zeros of Gi(z)

Gi(z) and Gi'(z) have infinite many complex zeros {y,} just below the
half-line phz=14n, and at the conjugate values. Asymptotic estimates can
be obtained by using the connection formula (7) with z replaced with ze™/3.
That is,

Gi(ze™?) = —e*?™PHi(—z) + iAi(ze™/3). (31)
We write Hi(—z) as in (12) and for Ai(z) we obtain from the standard asymptotic
expansion of this Airy function
1

/3 —mif12—i
Al(Ze / ) - 2\/;'[_2‘/46 / I"Aa(l’]), (32)
where (for ¢, see (15))
23 =\ (= 1)¢s
n=zz, Aa(ﬂ)"’ : . (33)
3 ; (in)’
The equation for deriving the asymptotic expansion of y, for large n then reads
—nija Aa(n)
3/4 nif4 2a\’l)
\/_z Ha(o) (34)
We write
= —liln(c )+e = 2n—-l- T c~—§n (35)
V[ - ’1n 2 nn ’ ’1n - 4 ’ - 8 ’
and obtain for ¢ the equation
; (n) ! !
e = it + et — t=—, 0==In(en,). 36
I—Biraga®, 1= 6=zl (36)
The next step is substituting a power series &= ¢t + &¢#> + ..., considering §

as a fixed parameter. A few straightforward manipulations give the
expansion

X~ [37(8n — 1)/8]2/3eni/3(] +§+%+f%;%+ ) (37)

n n n

and the first few coefficients are

_ 2. 2.
2 3
V3 = 1621( —96 + 376 — 455° + 85°),
T4 = 5g7¢ (—944 +43655 — 1 18262 + 7026° — 845%). (38)
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4.1. The complex zeros of Gi'(z)

For the complex zeros y, of Gi'(z) we use (cf. (7))
Gi'(ze"/3) = e"*Hi' (—z) + ie"*Ai (ze™/3). (39)
We need the expansion of Hi'(—z) given in (23) and

Al (ze"/?) = —f-l/—4e"f/‘2~""25( ), Aa(n) VZj D', (40)
- 2\/‘7'1‘ ’7 k] '7 pos (iﬂ)“ )
where d; is given in (25). We put
1 3/m\3
R / ! - =2(

n=mn,—id +¢, n, <2n+4>n, c 2(4) ) (41)
and the equation for ¢ reads

e = (1 —idt+en Pt Aa(n) § = in(er). (42)

Ha(n) 2
The expansion for the zeros reads
~[3n(8n + 1)/8)*/> ’"/3<1 il + ”,22 Jr_/3 )
M Mi My
n=1723, ... (43)
and the first few coefficients are
2. , 1 ,
V=30 vy =gp (-7 1085 + 125"),
1
! ! 12 /3
=35 i(—747 + 4586" — 2706 + 165”),
Yy = 3 —20029 + 437405’ — 169085 + 42125 — 1685™). (44)

5. The complex zeros of Hi(z)

Hi(z) and Hi'(z) have infinite many complex zeros {x,} just above the half-line
phz =1n, and at the conjugate values. For Hi(z) we use (6) in the form
Hi(ze™/?) = &*™/*Hi(—z) + 2¢ ™/S Ai(ze™™/3). (45)

The analysis is analogous to the case for Gi(z) and gives (36) with i replaced by —i,
also in Aa(n), and ¢ by ¢ =3 . This gives for k,, the zeros of Hi(z),

Kn~[37(8n — 82/3’”/3(l+ +2 + 3+ > 46
Br(8n - 1)/8] maliai s (46)

where 7, is given in (35), § = $In(cn,), with ¢ = %n, and the first few y, are given in
(38).
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—_ 1
For Hi'(z) we find Eq. (42) with i replaced by —i, also in 4a(y), and ¢ = 373. For
k!, the zeros of Hi'(z), we obtain

23 i Noh %
K~ [3n(8n+1)/8] PP 1 4 L4 224 2y )
”n rln n

n=12,3,... (47)

|
where 77, is given in (41), 8 = 3In(cn},), with ¢ =373, and the first few y} are given
(44).

6. Numerical verifications and tables

Now we will illustrate the accuracy of the asymptotic approximations for the real
and complex zeros of Gi(x), Gi'(x) (except the positive zero of Gi'(x)) and the
complex zeros of Hi(x) and Hi'(x). For the complex zeros, by complex conjugation,
we only need to consider 3z>0.

We use the asymptotic approximations as starting values for a Newton method,
obtaining convergence in all cases. The code [3] has been used for the calculations.
The accuracy of the code is better than 1072 and we expect that the zeros can be
computed with at least 12 exact digits.

Table 1 shows the relative error of the asymptotic estimates.

Next we compare the approximate values of the first 10 zeros with the numerical
values (see Tables 2-6).

Additionally, G'(x) has a positive zero: ¢’ = 0.60907541707.

In all cases, as could be expected, the asymptotic estimations are closer to the true
value as larger zeros (in modulus) are considered. Furthermore, as commented, the

Table 1

Relative error of the modulus of the zeros from the asymptotic estimations, compared with numerical
computations

n Error|g,| Errorlg],| Error|y,] Error|y)| Error|x,| Error|x}|
1 4x1072 5% 1073 4x 1074 2 x 1073 g x 1074 3 x 1073

5 7 %1077 1x10™* 6x 1078 2 x107°¢ 1 %1077 3% 107
10 5x 1078 2% 1073 1x107° 6 x 1078 2% 107° 9 %1078
25 Ix 107! 2x107¢ 8 x 10712 6 x 10710 1x 10! 9 x 10-10
50 1 x 10~ 3x 1077 2x 10713 2 x 101 3x 10713 2x 1071
75 2x 10713 1 x 1077 2x 1071 2x 10712 3x 1071 3% 10712
100 4% 10713 6 x 1078 3x 10713 4 x 10°% 5x 1071 6 %1013
150 5x 1014 2x 1078 1% 107" 5x 10714 6 x 10716 7 x 10714
200 1 %1074 1x10°% <107'® 1 x 107" 2x 10716 1 x10-14

The notation is as in the text. The number of non-zero coefficients of the asymptotic expansions considered
is as follows: for |g,| we take 2 coefficients for n = 1 and 6 coefficients for the rest of values of n; for |g,|,
[%als 1X4]> |kn] and || we take the first 4 non-zero coefficients.
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Table 2

Asymptotic estimations of the first 10 negative real zeros of Gi(x) and Gi'(x) versus their numerical value

(12 digits)

n gn (asymp.) gn (numer.) g, (asymp.) g, (numer.)
1 —0.70701728791 (2) —0.73764033232 —2.26148803837(4) —2.24995421864
2 —3.40013324843(2) —3.39083150945 —4.08890415841 (4) —4.08395408849
3 —4.75152465295(3) —4.75160079064 —5.50501788785 (4) —5.50743021111
4 —6.22702978591 (5) —6.22707083456 —6.78556344666 (4) —6.78414405732
5 —7.33018484228(5) —7.33017070326 —7.93738558753 (4) —7.93831371630
6 —8.53064462827(5) —8.53064781862 —9.02156063733 (4) —9.02090166816
7 ~9.50443871324(5) —9.50443547307 —-10.0362185151 (4) —10.0367106297
8 —10.5595675877 (5) —-10.5595678851 —11.0076119069 (4) —11.0072288049
9 —11.4501841971 (5) —-11.4501830272 —11.9333405428 (4) —11.9336474410

10 —12.4106527814 (5) —-12.4106527199 —12.8280143111 (4) —12.8277622904

Between brackets, the number of the first non-zero coefficients taken in the calculation of the asymptotic
expansion is given.

Table 3

Asymptotic estimations of the first 10 complex zeros of Gi(z) versus their numerical value (12 digits)

n

I (@asymptotic)

X, (numerical)

1 2.44433318205+1 3.28043340740 2.44134455893 +1 3.28073610375
2 3.82724470205+1 5.61364024656 3.82706907612 +1i 5.61368067243
3 4.94973090968 +1 7.55292445144 4.94969805256 + i 7.55293472024
4 5.94054868777 +1 9.27655846564 5.94053866799 +1 9.27656211688
5 6.84659373818+1 10.8567528445 6.84658973653 +1 10.8567544432
6 7.69146765566+1 12.3317696540 7.69146576022 +i 12.3317704591
7 8.48916873952+1 13.7249535559 8.48916772985 +1 13.7249540039
8 9.24886878556 +1 15.0518649809 9.24886819962 +1 15.0518652495
9 9.97699441862 +1i 16.3235290835 9.97699405568 +1 16.3235292542
10 10.6782722198 +i 17.5481160856 10.6782719832 +i 17.5481161992

The expansion is calculated using the first 4 coefficients.

Table 4

Asymptotic estimations of the first 10 complex zeros of Gi'(z) versus their numerical value (12 digits)

n

1, (asymptotic)

¥, (numerical)

1 3.73104015614 +1 3.20468169034 3.71910633591 +1i 3.20254922301
2 5.05878908159+1 5.49094064093 5.05721412684 +1i 5.49107967331
3 6.14094636445+1 7.40393823622 6.14051474537 +1 7.40403247457
4 7.09863883359+1 9.11033272563 7.09847245342 +1 9.11038169520
5 7.97658092867 +i 10.6784124602 7.97650267337 +1 10.6784393595
6 8.79711673037 +i 12.1445154227 8.79707480551 +1i 12.1445312817
1 9.57340329298 +i 13.5309191990 9.57337867420 +1 13.5309291376
8 10.3140187866 +1i 14.8525432972 10.3140033118 +i 14.8525498458
9 11.0249563206 +1i 16.1200042911 11.0249460691 +i 16.1200087871
10 11.7106171211 +1i 17.3411995000 11.7106100405 +i 17.3412026935

The expansion is calculated using the first 4 coefficients.
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Asymptotic estimations of the first 10 complex zeros of Hi(z) versus their numerical value (12 digits)

n

K, (asymptotic)

Kn (numerical)

1 1.31810666758 +i 3.93044374287 1.32022985770 +1 3.92618518472
2 2.71758115521 +1 6.25616826873 2.71776478546 +1 6.25594658531
3 3.86688975856 + i 8.18006876521 3.86692943374 +i 8.18002987309
4 4.88317281362 +1 9.88881442645 4.88318584624 +i 9.88880304438
5 5.81193606777 +1i 11.4556905719 5.81194151066+i 11.4556861557
6 6.67695905797 +1i 12.9188986002 6.67696171311 +1i 12.9188965531
7 7.49263240875+1 14.3015594043 7.49263385258 +i 14.3015583321
8 8.26849226103 +1 15.6190187624 8.26849311165+1 15.6190181486
9 9.01126446313 +1 16.8821242633 9.01126499607 +i 16.8821238875
10 9.7259145503+1 18.0989041312 9.72591490090 +i 18.0989038885

The expansion is calculated using the first 4 coefficients.

Table 6

Asymptotic estimations of the first 10 complex zeros of Hi'(z) versus their numerical value (12 digits)

n

K}, (asymptotic)

k), (numerical)

1 0.61539789841 +1 5.00682180461 0.62172976845 +1 4.99069463707
2 2.00101984737 +i 7.26100462042 2.00240099109 +i 7.25911069430
3 3.14666657916 +1i 9.13725837677 3.14711339788 +i 9.13677671663
4 4.16377885499 +1i 10.8089522433 4.16396557831 +1i 10.8087759627
5 5.09551443130+1 12.3455631789 5.09560639947 +1 12.3454833919
6 5.96454826183 +1 13.7832989849 5.96459897682 +i 13.7832574947
7 6.78472063073 +1 15.1440500844 6.78475098876 +i 15.1440262976
8 7.56527902355 +1 16.4423442321 7.56529836198 +i 16.4423295732
9 8.31279229101 +i 17.6884581451 8.31280522481 +1i 17.6884485950
10 9.03213892761 +i 18.8900067299 9.03214792350 +i 18.8900002276

The expansion is calculated using the first 4 coefficients.

asymptotic estimations can be used as starting values to compute accurately the
zeros of Scorer functions. The only exception is the positive real zero of Gi'(x),
which cannot be estimated via the asymptotic expansions for the zeros.
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